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Abstract

The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional

curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodi-

cally-spaced, two-dimensional ‘hills’ in a plane channel, and the other from a three-dimensional hill in a duct. One major objective is

to examine whether the predictive performance in 3-d (three-dimensional) conditions relates to that in 2-d (two-dimensional) flow.

In the former, the separation pattern is far more complicated, being characterised by multiple vortical structures associated with

‘open’ separation. The predicted separation behaviour in the 2-d flow differs significantly from model to model, with only one non-

linear model among those examined performing well, this variant formulated to adhere to the two-component wall limit. In 3-d

separation, none of the models gives a credible representation of the complex multi-vortical separation pattern.
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1. Introduction

Separation from curved surfaces is one of the hardest

aerodynamic processes to predict correctly. Yet, it is the

key to determining the gross flow properties in and the

operational performance of a wide variety of engineer-

ing devices, especially in aero-mechanical engineering.

Apart from the possible existence of large scale, or-

ganised shedding-like unsteadiness, a major predictive

challenge to RANS as well as LES schemes arises from
the fact that even slight changes in the time-averaged

location of the separation line are observed to result in

substantial changes in the reattachment behaviour and

thus in gross-flow features. In transonic flows, where

separation is provoked by shocks, there is also a strong

opposite effect of the details of the post-separation flow

substantially affecting the shock and hence the separa-

tion location.
The challenges arising from unsteadiness and ‘non-

locality’ of turbulence aside, a RANS scheme must be

able to return the sensitivity of the time-mean separation
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process to the evolution of the boundary layer as it

decelerates and skews, the latter in 3-d, while subjected
to adverse pressure gradient. This is an important dif-

ference relative to separation from a sharp corner. In

terms of statistical properties of turbulence, the sepa-

ration behaviour depends on the differentiated response

of the turbulent stresses in the boundary layer to shear,

irrotational and curvature-related straining, and turbu-

lence anisotropy is likely to play an important role in

this response. Similarly complex interactions are effec-
tive in the separated, curved shear layer, in the intense

streamwise vortices in 3-d flow, in the reattachment

process and in the post-reattachment recovery region.

Much effort has gone in recent years into the inves-

tigation of turbulence closures more complex than linear

eddy-viscosity models for separated flows, although

rarely in conditions in which separation from a contin-

uous surface is provoked by the action of a smoothly
varying adverse pressure gradient. Several studies have

examined the predictive performance of a range of non-

linear eddy-viscosity, explicit algebraic Reynolds-stress

and full second-moment models for separated labora-

tory flows in an effort to identify optimal modelling

methodologies (e.g. Lien and Leschziner (1995, 1997),

Apsley and Leschziner (1999), Hanjalic (1994), Craft

(1998), May (1999), Jang et al. (2002)). Moreover, a
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number of collaborative efforts, notably recent work-

shops organised under the auspices of ERCOFTAC

(Rodi et al., 1998; Jakirlic et al., 2001, Manceau and

Bonnet, 2003) have included key test cases that feature
separation from curved surfaces. Most of this work has

been undertaken within a 2-d framework, because of

the relatively modest computational effort involved, the

more abundant availability of experimental data and the

promise of greater insight into fundamental issues. Al-

though significant predictive advantages can be derived

from anisotropy-resolving models in some cases, model

performance has been observed to be uneven, and some
of the studies involved uncertainties arising from insuf-

ficient data and 3-d contamination of the experimental

flow or other experimental limitations. A crucially

important open question is whether the conclusions

derived for 2-d conditions translate to 3-d flows. Some

encouraging indications are provided by the studies of

Lien and Leschziner (1997) and Apsley and Leschziner

(1999), but both involve flow-specific limitations and do
not suffice to draw firm conclusions. There is, therefore,

a strong need to broaden the range of 3-d flows inves-

tigated. The outcome of such investigations will, in ef-

fect, dictate whether elaborate closures will be adopted

more widely for complex practical applications.

This paper focuses on two related flows featuring

separation from curved surfaces, one 2-d and the other

3-d, both shown in Fig. 1. The former geometry is a
nominally infinite sequence of periodic 2-d ‘hills’ in a

channel at Re ¼ 21; 200, based on mean velocity and

channel height. Extensive data for spanwise homoge-
Fig. 1. Geometries investigated. Upper plot includes streamfun
neous and streamwise periodic flow conditions are

available for this case from highly-resolved LES com-

putations performed by Temmerman et al. (2003) on a

mesh containing almost five million nodes. The 3-d
geometry is a circular hill (in plan) placed on the lower

wall of a duct. Its cross-section is similar in shape to that

of the 2-d hill. The flow around it, at Reynolds number

130,000, based on hill height and free-stream velocity,

was investigated experimentally by Simpson et al. (2002)

using LDV. It features a complex, multi-vortical sepa-

ration pattern in the leeward side of the hill, as shown in

Fig. 9. Thus, although the 2-d and 3-d flows are geo-
metrically akin, the latter is physically much more

complex than the former.

The 2-d flow, treated as a single periodic hill-crest-to-

hill-crest segment, has been the subject of a recent study

by Jang et al. (2002), which examined the performance

of a range of non-linear eddy-viscosity and explicit

algebraic Reynolds-stress models. A particular issue

addressed in that paper in relation to this flow is whether
streamwise periodicity is an important aspect in judging

alternative turbulence closures. Periodicity is often said

to be unrepresentative of real predictive situations and

assumed to pose added challenges through the fact that

errors in the inner-domain solution are fed back to the

inlet plane, thus progressively amplifying the departure

of the model solution from reality and obscuring model

capabilities. The extent to which this issue affects con-
clusions on closure performance and their applicability

to cases in which the inlet flow is specified as a boundary

condition is addressed by performing computations for
ction contours. Lower plot contains surface streaklines.
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a sequence of three hills, with LES conditions applied to

the inflow plane, as well as for a single segment, with

imposed periodicity conditions. The former practice al-

lows the rate of approach to the periodic state to be
studied and the ‘anchoring’ influence of the specified

inlet conditions to be identified in terms of its impor-

tance to the assessment of turbulence models.
2. Turbulence models

Five turbulence models are investigated herein,
namely: the Craft–Launder–Suga cubic eddy-viscosity

model (Craft et al., 1996), the Apsley and Leschziner

(1998) cubic eddy-viscosity model (AL-e); the Wallin

and Johansson (2000) explicit algebraic stress model

(WJ-x); the Abe-Jang-Leschziner quadratic eddy-vis-

cosity model (2003) (AJL-x); and the Speziale–Sarkar–

Gatski Reynolds-stress-transport model (Speziale et al.,

1991), extended to low-Re conditions by Chen et al.
(2000) (SSG-e), in which the extensions ‘e’ and ‘x’ to the

abbreviations indicate the nature of the length-scale

equation used in the models. This is a selection from a

broader investigation including further non-linear eddy-

viscosity and Reynolds-stress models (NLEVMs and

RSTMs). The selected group contains a representative

cubic model (derived from a simplified Reynolds-stress

model), the most recent explicit algebraic Reynolds-
stress model, (quadratic in 2-d and quadratic in 3-d), a

representative Reynolds-stress-transport model and a

recent quadratic model, formulated to adhere to the

correct limiting behaviour of near-wall turbulence (see

below). The above selection may be claimed to represent

the two principal groups of anisotropy-resolving tur-

bulence models currently considered as primary alter-

natives to isotropic-viscosity models for complex-flow
applications. More advanced forms of second-moment

closure exist (e.g. Jakirlic and Hanjalic (1995), Craft and

Launder (1996), Batten et al. (1999)). However, experi-

ence suggests that their predictive performance in com-

plex-flow conditions is not fundamentally different from

that of simpler second-moment closures.

A complete mathematical description of all models is

provided in Jang et al. (2002). Of these, the quadratic
low-Reynolds-number model of Abe et al. (AJL-x) is

the most recent and differs in two important respects

from other models of the NLEVM type. First, it aug-

ments the basic quadratic constitutive stress–strain/

vorticity equation by two additive fragments intended to

account, respectively, for high normal straining and

strong near-wall anisotropy. Second, it uses a form of

the x-equation that is much closer than Wilcox’s form
to the e-equation. Specifically, it includes products of k-
and x-gradients and coefficients for the production and

destruction terms that are directly equivalent to Ce1 and

Ce2 normally used in the e-equation.
An influential model fragment accounts specifically

for strong near-wall anisotropy and for the correct de-

cay towards two-component turbulence that is observed

in DNS. This decay cannot be represented solely by the
use of terms combining the strain and vorticity. The

approach taken by Abe et al. was thus to add a tenso-

rially correct wall-related term to the constitutive stress–

strain/vorticity relation aij � uiuj
k � 2

3
dij ¼ f ðSij;Xij . . .Þ,

which takes into account the wall orientation. In the

model variant used here, the wall-direction indicator is:

di ¼ Ni=
ffiffiffiffiffiffiffiffiffiffiffi
NkNk

p
, Ni ¼ old=oxi, ld ¼ yn (wall distance)

which is then used in the additive wall-anisotropy cor-
rection of the form:

waij ¼ �fw didj

�
� dij

3
dkdk

�

� f ðSikSkj; SikXkj; SkjXik; S2;X2 . . .Þ;

where fw is a viscosity-related damping function (see
Jang et al. (2002) for details). Alternative wall-orienta-

tion indicators that are independent of wall distance

may readily be used. In the above damping function, a

composite time scale is used, which combines the macro-

scale k=e with the Kolmogorov scale
ffiffiffiffiffiffiffi
m=e

p
. The damp-

ing function fw then provides a smooth transition

between the two scales across the near-wall layer. The

model is fully described in Abe et al. (2003) and Jang et
al. (2002), and the latter publication demonstrates, by

way of results for the anisotropy and its invariants, that

the model indeed returns the correct wall-asymptotic

behaviour of the stresses for the separated flow in the 2-

d constricted channel also considered in this paper.
3. Computational issues

3.1. Numerical procedure

Computations were performed with a non-orthogo-

nal, collocated, cell-centred finite-volume approach

implemented in the code ‘STREAM’ (Lien and

Leschziner (1994), Apsley and Leschziner (1999)).

Convection of both mean-flow and turbulence quantities
is approximated by the ‘UMIST’ scheme (Lien and

Leschziner (1994))––a second-order TVD approxima-

tion of the QUICK scheme. Mass conservation is en-

forced indirectly by way of a pressure-correction

algorithm. Within this scheme, the transport and the

pressure-correction equations are solved sequentially

and iterated to convergence.
3.2. 2-d Hill flow

Previous computations by Jang et al. (2002) have

treated this flow as perfectly periodic. Here, in contrast,

a sequence of three hills is considered for reasons
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explained in the introduction. Inlet conditions, taken

from the LES solution, were specified 2 hill heights

upstream of the first hill, a position at which the flow

undergoes recovery from the reattachment 2.5 hill
heights further upstream. Following grid-dependence

tests, in addition to those undertaken earlier by Jang et

al. (2002) for the periodic segment, a non-uniform body-

fitted H -type grid comprising 700 · 90 nodes has been

used. The grid is compressed towards the walls, with five

nodes covering the viscous sub-layer down to yþ ¼ 0:5.
The channel following the third hill is extended to allow

the flow to recover to a state permitting zero-stream-
wise-gradient conditions to be prescribed with little er-

ror. Although the hill-to-hill distance allows for a

significant length of post-reattachment recovery, the

above practice poses some (probably minor) uncertainty

in terms of the influence of any downstream hill on the

separated flow upstream of that hill.

3.3. 3-d Hill

The hill, having a base diameter of four heights and

shape defined by Bessel functions, stands on the lower

wall of a sufficiently large duct to be only subjected to
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Fig. 2. 3-d Hill––matching between the calculation for the hill-free duct flow a

cubic eddy-viscosity model.
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the lower-wall boundary layer. The thickness of this

layer, 2 hill-heights upstream of the hill, is approxi-

mately 0.5 hill heights. Measurements for this case are

available, in the form of profiles of mean-flow, Rey-
nolds-stresses and their orientation, at 3.63 hill heights

downstream of the hill crest, the latter located at

x=H ¼ z=H ¼ 0. In addition, hill-topology results are

reported. Unfortunately, no upstream conditions are

available, so that the inlet flow cannot be specified di-

rectly. Instead, profiles of velocity and Reynolds stresses

have been measured in the duct with the hill removed at

the location corresponding to the hill centreline. To
generate inlet conditions, pre-cursor, hill-free duct cal-

culations were performed over a length of 20 hills

heights, and the reference hill-top conditions, as re-

turned by the computation, were determined by

matching the solution to the measured duct-flow pro-

files. The result of this matching process is indicated in

Fig. 2 for the particular case of the AL-e model. The

conditions returned by the solution 4 hill heights up-
stream of the matching location were then taken as inlet

conditions for the hill calculations. The sensitivity to

errors in the matching process was then investigated by

repeating some hill computations with inlet conditions
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taken at 1 hill height upstream and downstream of the

reference location.

The computational domain is shown in Fig. 1 and

extends over one half of duct cross-sectional area (time-
accurate unsteady computations over the whole duct are

commented upon below). The H -type, single-block,

body-fitted grid covering the domain comprises

110 · 105 · 80 (approximately one million) nodes, with

the wall-nearest nodes lying within yþ < 1. Grid-inde-

pendence tests were conducted with three grids con-

taining, respectively, 0.3, 1.0 and 2.2 million nodes. Fig.

3 shows profiles of streamwise velocity and turbulence
energy predicted at x=H ¼ 3:63 with the cubic model of

Apsley and Leschziner (1998) and the three grids. Grid-

dependence is seen to be minor, as it is in respect of

other flow properties, and will be shown below to be

wholly insignificant relative to discrepancies between all

computations and the experimental data.
4. Results

4.1. 2-d Hill

It is recalled first that the principal purpose of this

section is to examine the sensitivity of turbulence-model

performance to the imposition of streamwise periodic-

ity, relative to an explicit prescription of the flow-inlet
conditions; a detailed interpretation of the predicted

physical flow features by the various models is provided,

for the periodic implementation, in the article by Jang

et al. (2002).

An overall view of the predicted mean-flow charac-

teristics, relative to the LES solution is provided in Fig.

4. This shows stream-function contours for the flow

between the second and third hills, and below them,
related plots showing how the reattachment location

changes as the flow progresses from the first to the

second and to third hill. The uppermost l.h.s. plot is the

reference LES result. The hill-to-hill variation in terms

of the reattachment location is compared with that

returned by the periodic and LES solutions, both rep-

resented by related horizontal lines, identifying hill-

independent values. Profiles of the streamwise velocity,
Reynolds shear stress and turbulence energy two hill

heights downstream of the hill crest, predicted by the

five models outlined in Section 2, are shown in Figs. 5–7,

respectively 1. Each plot contains five profiles: one the

reference LES solution, one the period solution reported

by Jang et al. (2002), and three profiles relating to the

conditions after the first, second and third hills,

respectively.
1 For hill segments 2 and 3, x=H ¼ 2 should be interpreted as

x=H ¼ 9þ 2 and 18+ 2, respectively.
Fig. 4 demonstrates the degree to which the imposi-

tion of periodicity does or does not impact on the

assessment of models’ predictive characteristics. It is

arguable that streamwise periodicity is unrepresentative
of practical problems in which the prescribed upstream

conditions tend to ‘anchor’ the solution, so that model

defects are understated, while defects are amplified by

the feedback mechanism inherent in the imposition of

periodicity. The present results do not support this

argument. As seen, a model returning a periodic solu-

tion that is relatively far from the correct one (e.g.

WJ-x) also gives large errors in the non-periodic
implementation. Indeed, for some models, the error is

initially larger, with the solution eventually settling––as

must be the case––towards that of the periodic imple-

mentation. The profiles in Figs. 5–7 show that, unless a

model returns an especially poor representation for the

periodic state, the main predictive characteristics of that

model are well established after the first hill, and that

only relatively minor changes in the flow structure occur
as the flow progresses downstream. Self-evidently, this is

especially so in the case of a model that gives a periodic

solution that is close to the baseline LES field. This

applies, in particular, to the Abe–Jang–Leschziner

model that is shown in Jang et al. (2002) to give the best

representation of the flow and also performs well in a

priori tests based on the LES fields (see Jang et al.

(2002)). Fig. 8, showing the skin friction on the lower
wall for the periodic segment, reinforces this observa-

tion. As seen, the AJL-x model returns, here again, the

best representation over most of the wall. However,

despite this generally favourable predictive quality,

Figs. 6 and 7 demonstrate that even this model returns

insufficient turbulence activity in the separated shear

layer––a defect common to all models and proba-

bly reflecting large-scale unsteadiness in the separa-
tion location, as discussed in the introduction. Of the

models examined, that by Wallin and Johansson (WJ-x)
does least well, giving a seriously excessive separation

length. The SSG model, with which the WJ model

is associated, performs almost as badly. Although

Fig. 4 shows this model to return a broadly correct

reattachment location, this is a consequence of the

doubling-up of the separation streamline close to reat-
tachment, a defect often observed in the applications of

Reynolds-stress-transport models to 2-d separated flow.

This masks the misrepresentation of the general struc-

ture of the recirculation region, which is evident from

Fig. 4.

4.2. 3-d Hill

The principal experimental data available for this

case are velocity and Reynolds-stress profiles 3.63 hill

heights downstream of the hill crest. Derived from

these are further data for the parameter S�1 ¼
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�uvÞ2 þ ð�vwÞ2=vv

q
, which may be regarded as an

anisotropy parameter. Additional surface data include
oil-film traces on the hill surface, pressure and a skin-

friction distributions on the hill surface.
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Fig. 9 compares predicted skin-friction (or limiting

streamlines) on the hill surface with a topological map

extracted from the oil-film experiments. As is evident,

there are major differences between all model predictions

and the experiment. The latter shows footprints of three

distinct vortex pairs, while the models all predict a single

pair associated with a single separation line on the hill’s
leeward side.
In the experiment, the vortices detach from the lee-

ward hill surface at a relatively high elevation. Below

these vortices, fluid is being drawn inwards from both

sides towards the central leeward region, resulting in a

downwash towards the base of the hill and creating a

distinctive impingement node ‘Ns’ in the experimental

topology map. The fluid moving downwards finally
spreads outwards across the wall, feeding the detaching

vortices and the wake, the latter process causing a rapid

reduction in the momentum deficit in the wake and an

outward spreading in the recovering wake behind the

hill. Simultaneously, fluid is flowing around the base of

the hill, below the vortices, towards the central leeward

region. These two flow components then merge behind

the hill, creating the two dashed reattachment lines.
While there are clearly subtle differences among the

computational predictions, all fail to return the complex

flow features described above. The strong single vortex

pair in the leeward hill side extends to the base of the hill

and does not permit fluid to be drawn into the base from

above to feed the wake and initiate the experimentally

observed rapid downstream recovery and the lateral

spread of the wake. This is well brought out by the
‘virtual particle’ traces and transverse-velocity-vector

fields shown in Fig. 10. The origins of the four traces are

identical in all plots and are located slightly above the

surface and slightly upstream of the hilltop. While the

downstream evolution of the traces indicates not insig-



Fig. 9. 3-d Hill––predicted skin-friction lines on the hill surface in comparison with experimentally-derived topology map.
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nificant differences among the predicted vortex struc-

tures, they clearly show, as do the transverse-velocity

plots, that the flow close to the base of the hill is dom-

inated by an inward motion towards the centre plane

followed by an upward motion at this plane away from

the lower wall.

One major consequence of the above structural dif-
ferences is a much narrower and more intense wake

predicted by the calculations in comparison with reality.

This emerges from Fig. 11 which gives wall-normal
profiles of streamwise velocity at different spanwise

locations predicted with the AJL-x and the SSG-e
models. The solutions derived from the other two

models are qualitatively similar. The differences between

the predictions and the experiment reflect the much

more intense reverse flow predicted by all models in the

leeward central portion of the hill’s surface and the
absence of the downwash described above. They are also

consistent with the much faster experimental pressure

recovery behind the hill, relative to the plateaus in the



Fig. 10. 3-d Hill––virtual-particle trace lines and transverse-velocity fields at x=H ¼ 2:0 illustrating the separation and vortical behaviour in the hill’s

leeward side.

Fig. 11. 3-d Hill––profiles of streamwise velocity at x=H ¼ 3:63 and various spanwise z=H locations.
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Fig. 12. 3-d Hill––distributions of pressure coefficient on the hill wall

along the spanwise mid-plane z=H ¼ 0. Fig. 14. 3-d Hill––distributions of friction velocity on lower wall at

x=H ¼ 3:63.
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solutions, shown in Fig. 12 and characteristic of massive

separation. In respect of model performance, Fig. 12

brings to light one interesting correspondence between

the behaviour observed in the 2-d hill configuration and

in the present flow, namely that the AJL model tends to
give a relatively fast recovery from separation and the

least excessive level of separation, while the WJ model

returns the most exaggerated representation.

Consistent with the differences in mean flow, the

computed turbulence energy, shown in Fig. 13, dimin-

ishes rapidly in the spanwise direction, confirming that

the wake is confined to a much narrower region around

the centre plane than its experimental counterpart.
Fig. 13. 3-d Hill––profiles of turbulence energy at x=
The predicted skin-friction magnitude, shown in Fig.
14, is too low in the region 0 < z=H < 0:2, but varies

rapidly thereafter, again indicating an excessively nar-

row and intense wake with high momentum deficit.

Beyond z=H ¼ 0:3, the predicted value is too high, this

region being mostly outside the computed wake, as is

also recognised from the low predicted levels of turbu-

lence energy at this spanwise location, Fig. 13.

Comparisons for the parameter S�1 have been in-
cluded here, in Fig. 15, for the purpose of examining the

near-wall behaviour of the stresses. The parameter does

not, of course, provide information on the stresses
H ¼ 3:63 and various spanwise z=H locations.



Fig. 15. 3-d Hill––profiles of S�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�uvÞ2 þ ð�vwÞ2

q
=vv at x=H ¼ 3:63 and various spanwise z=H locations.
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themselves. These are unlikely to agree with the mea-

surements, in view of the discrepancies observed in
Figs. 9–14. It is recalled that the AJL model is designed

to return the correct wall-asymptotic behaviour. This

is indicated in Fig. 15, albeit qualitatively, by the

sharp rise in S�1 as the wall is approached. This rise

reflects the fact that the shear stresses decay (or should

decay) at a rate Oðy3Þ, while the normal stress v2 should
decay at the faster rate Oðy4Þ. The Reynolds-stress clo-

sure returns a qualitatively similar behaviour, but is
not specifically formulated to give the correct wall-

asymptotic decay of the stresses. The experimental data

do not show the same rapid increase in this parameter,

but their accuracy must be questionable very close to the

wall.

The general behaviour observed above, especially in

Figs. 11 and 12, is reminiscent of that returned by other

RANS computations for bluff-body flow, in which large-
scale, coherent, unsteady features associated with vortex

shedding are not resolved, hence displaying excessive

recirculation and insufficient rates of wake recovery and

spread. In the light of this observation, some unsteady

RANS computations have recently been performed with

a second-order accurate scheme over the full channel

width with the Apsley–Leschziner cubic eddy-viscosity

model and the inlet flow perturbed periodically over a
wide range of Strouhal numbers around a value of 0.2,

based on hill height. In all circumstances, the unsteady

solution returned to a steady state when the perturba-

tion was removed. Large eddy simulations have also

been performed for the present hill geometry, but at a

Reynolds number of only 13,000, i.e. 10% of the
experimental values, because of computer-resource lim-

itations and the need to carefully resolve the near-wall
region with a dense mesh. Time-averaged results have

been compared to a steady-state calculation at the same

Reynolds number performed with the Apsley–Leschz-

iner model. The results of this study will be reported

separately in Temmerman et al. (2004). Suffice it to re-

port here that, at this much lower Reynolds number, the

LES results suggest a much simpler separation behav-

iour than that shown in the experimentally-derived map
included in Fig. 9. Correspondingly, agreement between

the RANS computation and the simulation was found

to be much closer. Hence, the LES computation does

not, unfortunately, provide an explanation for the dis-

crepancies recorded at Re ¼ 130; 000. To undertake

credible, wall-resolved simulations at this high Reynolds

number would be a major challenge and would in all

likelihood require the use of a high-quality LES–RANS
hybrid method.
5. Conclusions

A computational study has been undertaken to

examine the ability of anisotropy-resolving turbulence

models to predict 2-d and 3-d separation from curved
surfaces forming hill-shaped obstructions. In the 2-d

case, most models of this ilk over-estimate the size of the

recirculation zone. This is associated with an insufficient

level of the shear stress in the separated shear layer. An

exception, in a number of respects, is the non-linear

EVM model by Abe et al. (2003). This has been shown
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here, as was done in an earlier study on a periodic seg-

ment, to give results quite close to the LES solution. The

study has also demonstrated that the imposition of

periodicity does not impact on the conclusions derived
earlier: the present computations encompassing three

hills with prescribed inlet conditions bring out the fact

that a model performing poorly in periodic conditions

performs (or at least may perform) even worse with

prescribed inlet conditions.

Disappointingly, none of the models examined gives a

satisfactory representation of the corresponding 3-d

separation process, although there are not insignificant
differences among the solutions. All computations ap-

pear to miss some important mechanisms that are

responsible for the multiple-vortex structure in the

wake. The predicted vortical separation encompasses a

much too large portion of the leeward hill side, the re-

verse flow on this side is too intense, the wake is too

narrow and its recovery too slow. Unsteady computa-

tions do not support the supposition that organised
periodic motions associated with a shedding mechanism

play a crucial role in causing the predictive errors.

However, the inability of the models to represent the

dynamics of large-scale eddies and unsteady separation

can obviously not be ruled out. Nor do large eddy

simulations, albeit at a much lower Reynolds number,

provide indications on any specific mechanism that is

missed. A resolution of this question may emerge from
simulations at the correct Reynolds number, but these

are bound to be extremely costly.
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